Стиль

Производство мыла. Химическая формула мыла. Производство мыла Жидкое мыло формула химическая

Омыление — это гидролиз сложных эфиров под действием щёлочи. При этом получается соль органической кислоты и спирт. Исторически это название пошло от процесса получения мыла — гидролиза жиров щёлоком, при котором получается смесь солей высших жирных кислот (собственно — мыло) и глицерин (трёхатомный спирт).
Соответственно омыление — это реакция сложного эфира со щелочью.

До изобретения мыла жир и грязь с кожи удаляли золой и мелким речным песком.Технология изготовления мыла из животных жиров складывалась на протяжении многих веков. Посмотрим, как можно приготовить мыло в химической лаборатории. Сначала составляется жировая смесь, которую расплавляют и омыляют – варят со щелочью. Для гидролиза жира в щелочной среде берется немного топленого свиного сала, около 10 мл этилового спирта и 10 мл раствора щелочи. Сюда же добавляют поваренную соль и нагревают полученную смесь. При этом образуются мыло и глицерин. Соль добавляют для осаждения глицерина и загрязнений. Также получают мыло в промышленности.

Состав мыла
Мыла – натриевые или калиевые соли высших карбоновых кислот (кислот, содержащих в своем составе более 10 атомов углерода), полученных в результате гидролиза жиров в щелочной среде (чаще всего из жиров, содержащих в составе стеариновую кислоту С 17 Н 35 СООН) — С 17 Н 35 СООNa – стеарат натрия.
Жир + щелочь = соли жирных кислот и глицерин.

Свойства мыла
Поверхностный слой дистиллированной воды находится в натянутом состоянии подобно упругой пленке. При добавлении мыла и некоторых других растворимых в воде веществ поверхностное натяжение воды уменьшается. Мыло и другие моющие вещества относят к поверхностно-активным веществам (ПАВ). Они уменьшают поверхностное натяжение воды, усиливая тем самым моющие свойства воды.

Молекулы, находящиеся на поверхности жидкости, имеют избыток потенциальной энергии и поэтому стремятся втянуться внутрь так, что при этом на поверхности остается минимальное количество молекул. За счет этого вдоль поверхности жидкости всегда действует сила, стремящаяся сократить поверхность. Это явление в физике получило название поверхностного натяжения жидкости.

Молекулы ПАВ на пограничной поверхности располагаются так, что гидрофильные группы карбоксильных анионов направлены в воду, а углеводородные гидрофобные выталкиваются из нее. В результате поверхность воды покрывается частоколом из молекул ПАВ. Такая водная поверхность имеет меньшее поверхностное натяжение, что способствует быстрому и полному смачиванию загрязненных поверхностей. Уменьшая поверхность натяжения воды, мы увеличиваем ее смачивающую способность.

Секрет очищающего действия мыла


СМС (синтетические моющие средства) – натриевые соли синтетических кислот (сульфокислот, сложных эфиров высших спиртов и серной кислоты).
Рассмотрим свойства моющих веществ и сравним мыла и СМС (стирального порошка) . Для начала проверим, какая среда характерна для наших моющих средств. Как мы это сделаем?
С помощью индикаторов.
Будем использовать известные нам индикаторы – лакмус и фенолфталеин. При добавлении лакмуса в раствор мыла и в раствор СМС он приобретает синий цвет, а фенолфталеин – малиновый, то есть реакция среды щелочная.

А что происходит с мылом и СМС в жесткой воде? (понятно, почему мыловары не варят мыло на водопроводной воде, а используют отвары, дистиллированную воду, молоко и тд.)
Добавим в одну пробирку раствор мыла, а в другую раствор СМС, взболтаем их. Что вы наблюдаете? В эти же пробирки добавим хлорид кальция и взболтаем содержимое пробирок. Что вы наблюдаете теперь? Раствор СМС пенится, а в растворе мыла образуются нерастворимые соли:
2С 17 Н 35 СОО – + Са 2+ = Са(С 17 Н 35 СОО) 2
А СМС образуют растворимые соли кальция, которые также обладают поверхностно-активными свойствами.
Использование чрезмерного количества этих средств приводит к загрязнению окружающей среды. Послушаем сообщение об экологических последствиях использования ПАВ.
Многие ПАВ трудно поддаются биологическому разложению. Поступая со сточными водами в реки и озера, они загрязняют окружающую среду. В результате образуются целые горы пены в канализационных трубах, реках, озерах, куда попадают промышленные и бытовые стоки. Использование некоторых ПАВ приводит к гибели всех живых обитателей в воде.

Почему раствор мыла, попадая в реку или озеро, быстро разлагается, а некоторые ПАВ нет? Дело в том, что мыла, полученные из жиров, содержат неразветвленные углеводородные цепи, которые разрушаются бактериями. В то же время в состав некоторых СМС входят алкилсульфаты или алкил(арил)сульфонаты с углеводородными цепями, имеющими разветвленное или ароматическое строение. Такие соединения бактерии «переварить» не могут. Поэтому при создании новых ПАВ необходимо учитывать не только их эффективность, но и способность к биологическому распаду – уничтожению некоторыми видами микроорганизмов.

Строение мыла, его свойства

Мыла – это натриевые или калиевые соли высших жирных кислот (схема 1), гидролизующихся в водном растворе с образованием кислоты и щелочи.

Общая формула твердого мыла:

Cоли, образованные сильными основаниями щелочных металлов и слабыми карбоновыми кислотами, подвергаются гидролизу:

Образовавшаяся щелочь эмульгирует, частично разлагает жиры и освобождает таким образом прилипшую к ткани грязь. Карбоновые кислоты с водой образуют пену, которая захватывает частицы грязи. Калиевые соли по сравнению с натриевыми лучше растворимы в воде и поэтому обладают более сильным моющим свойством.

Гидрофобная часть мыла проникает в гидрофобное загрязняющее вещество, в результате поверхность каждой частицы загрязнения оказывается окруженной оболочкой гидрофильных групп. Они взаимодействуют с полярными молекулами воды. Благодаря этому ионы моющего средства вместе с загрязнением отрываются от поверхности ткани и переходят в водную среду. Так происходит очистка загрязненной поверхности моющим веществом.

Производство мыла состоит из двух стадий: химической и механической. На первой стадии (варка мыла) получают водный раствор натриевых (реже калиевых) солей, жирных кислот или их заменителей.

Получение высших карбоновых кислот при крекинге и окислении нефтепродуктов:

Получение натриевых солей:

С n H m COOH + NaOH = С n H m COONa + H 2 O.

Варку мыла заканчивают обработкой мыльного раствора (мыльного клея) избытком щелочи или раствором хлорида натрия. В результате этого на поверхность раствора всплывает концентрированный слой мыла, называемый ядром. Полученное мыло называют ядровым, а процесс его выделения из раствора – отсолкой или высаливанием.

Механическая обработка заключается в охлаждении и сушке, шлифовке, отделке и упаковке готовой продукции.

В результате мыловаренного процесса мы получаем самую разнообразную продукцию, с которой вы можете ознакомиться.

Производство хозяйственного мыла заканчивают на стадии высаливания, при этом происходит очистка мыла от белковых, красящих и механических примесей. Производство туалетного мыла проходит все стадии механической обработки. Наиболее важной из них является шлифовка, т.е. переведение ядрового мыла в раствор кипячением с горячей водой и повторным высаливанием. При этом мыло получается особо чистым и светлым.

Стиральные порошки могут:

Раздражать дыхательные пути;

Стимулировать проникновение в кожу ядовитых веществ;

Вызывать аллергию и дерматит кожи.

Во всех этих случаях необходимо перейти на использование мыла, единственным недостатком которого является то, что оно сушит кожу.

Если мыло варилось из животных или растительных жиров, то из раствора после отделения ядра выделяют образующийся при омылении глицерин, который находит широкое применение: в производстве взрывчатых веществ и полимерных смол, как умягчитель ткани и кожи, при изготовлении парфюмерных, косметических и медицинских препаратов, в производстве кондитерских изделий.

В производстве мыла применяют нафтеновые кислоты, выделяемые при очистке нефтепродуктов (бензина, керосина). С этой целью нефтепродукты обрабатывают раствором гидроксида натрия и получают водный раствор натриевых солей нафтеновых кислот. Этот раствор упаривают и обрабатывают поваренной солью, в результате чего на поверхность раствора всплывает мазеобразная масса темного цвета – мылонафт. Для очистки мылонафта его обрабатывают серной кислотой. Этот нерастворимый в воде продукт называют асидолом или асидол-мылонафтом. Непосредственно из асидола изготовляют мыло.

Для того, что бы разобраться, как сварить мыло с нуля в домашних условиях, необходимо определится, какие же свойства вы хотите получить от вожделенного кусочка мыла. Будет ли это мыло для тела, или же шампунь-мыло, ожидаете мягкую мелкую пену или крупные мыльные пузыри, хотите сделать увлажняющее мыло, антисептическое или мыло скраб. От всего этого и будет зависеть состав мыла и свойства. В этой статье мы постараемся пошагово разобраться, как составить рецепт мыла.

Три кита мыла с нуля: щелочь, масло и вода

Напомним, для того, что бы приготовить мыло с нуля, достаточно трех компонентов: щелочь, вода, масло (жир). В качестве щелочи для твердых видов мыла используем каустическую соду NaOH, для жидкого мыла – едкий калий KOH. Ну, а для того, что бы разобраться, как выбрать масла для изготовления мыла с нуля, рекомендуем обратить внимание на наш раздел . Если кратко, то

  • пышную пенку дают пальмоядровое и кокосовое масло, устойчивую пену создадут оливковое масло, масло сладкого миндаля и кукурузное
  • увеличивают твердость мыла , а значит и время смыливания – все те же кокос и пальмоядровое масло
  • увлажнит – олива, масло ши, масло сладкого миндаля и масло абрикосовой косточки.

Учимся составлять рецепт мыла с нуля

Метод изготовления мыла с нуля, процесс химический (химия мыла), а значит требующий серьезного подхода и точного расчета. Следовательно, необходим точный вес масла, от которого будет зависеть вес щелочи и воды. Сразу по технологии выбирайте те масла, которые хотите использовать в вашем мыле и их количество. Дальше, вам необходимо совместить воду и щелочь, а для этого нужно отмерить эти ингредиенты.

1. Как отмерить щелочь для составления рецепта мыла с нуля:

Формула для расчета количества щелочи:

Масса базового масла * число омыления * 95% = требуемое количество NaOH.

Если в составе несколько масел, то для определения веса щелочи, умножаем вес каждого масла на соответствующее число омыления, суммируем все произведения и полученный результат умножаем на 95 %:

((Вес масла1×Число омыления1) + (Вес масла2×Число омыления2) + (Вес масла3×Число омыления3)) × 95 % = Вес каустической соды

Число омыления

Омыление, это химическая реакция, благодаря которой, из смеси получится мыло, и щелочь полностью растворится в масле. Безусловно, что коэффициент омыления для разных масел варьируется.

Наименование масла (жира) Число омыления (коэффициент)
Жожоба масло 0,066-0,069
Масло виноградных косточекКасторовое маслоМасло ши 0,128
Масло зародышей пшеницы 0,132
Авокадо масло 0,133
Льняное маслоОливковое маслоМасло персиковых косточек

Подсолнечное масло

0,134
Масло абрикосовых косточекАрахисовое маслоТыквенных семечек масло 0,135
Масло грецкого орехаМасло сладкого миндаля 0,136
Какао маслоКунжутное масло 0,137
Пальмовое масло 0,141
Кокосовое масло 0,190
Шиповниковое масло 0,193
Молочный жир 0,255
Пчелиный воск 0,690

2. Как отмерить воду в мыло с нуля

Формула расчета воды в мыле с нуля

Вес масла, в граммах × 0,375 = Вес воды, в граммах

При использовании нескольких масел:

Сумма веса всех масел, в граммах × 0,375 = Вес воды, в граммах

3. Пример расчета количества каустической соды и воды в мыле с нуля

(Суммарный состав 1 кг масел)

Подставляем данные в формулу для расчета каустической соды:

((500×0,134) + (400×0,141) + (100×0,193)) × 95 % = 142,7×0,95 = 135,6 (г) – вес каустической соды на 1 кг масел.

Подставляем данные в формулу для расчета воды:

(500 + 400 + 100) × 0,375 = 375 (г) – вес воды на 1 кг масел.

Полученный рецепт:

Оливковое масло – 500 г

Пальмовое масло – 400 г

Шиповника масло – 100 г

Щелочь (каустическая сода) – 135,6 г

Вода (ледяная) – 375 г

Это наглядный пример, как работает мыльный калькулятор, просчитанный вручную.

Мыльный калькулятор

Создавая свой рецепт для мыла с нуля, вы можете воспользоваться существующими калькуляторами, где достаточно указать желаемые масла и их вес, а компьютер сам рассчитает нужное количество щелочи и воды. Т.е, в принципе, не нужно знать число омыления, этот коэффициент автоматически заложен в калькулятор. Примеры нескольких калькуляторов из интернета: , ., . Тут так же указывается на сколько сбалансирован ваш рецепт, зачастую на этот параметр лучше обращайте особое внимание.

Если же Вы доверяете только собственным подсчетам, то воспользуйтесь вышеприведенными формулами и коэффициентами.

Определение

Мыла - жидкие или твёрдые продукты, содержащие поверхностно-активные вещества, в соединении с водой используемое для очищения и ухода за кожей (туалетное мыло, шампуни, гели), либо как средство бытовой химии - моющего средства (мыло хозяйственное).

Химический состав мыла

С точки зрения химического состава:

твердые мыла - смесь растворимых натриевых солей высших жирных (предельных и непредельных) кислот;

жидкие мыла - смесь растворимых калиевых или аммонийных солей тех же кислот

Один из вариантов химического состава твёрдого мыла - $C_{17}H_{35}COONa$, жидкого - $CC_{17}HH_{35}COOK$. К жирным кислотам, из которых изготавливают мыло, относятся:

  • стеариновая (октадекановая кислота) - $C_{17}H_{35}COOH$, твердая, одноосновная предельная карбоновая кислота, одна из наиболее распространённых в природе жирных кислот, входящая в виде глицеридов в состав липидов , прежде всего триглицеридов жиров животного происхождения (в бараньем жире до ~30 %, в растительных (пальмовое масло) - до 10 %).
  • пальмитиновая (гексадекановая кислота) - $C_{15}H_{31}COOH$, наиболее распространённая в природе твердая одноосновная насыщенная карбоновая кислота (жирная кислота), входит в состав глицеридов большинства животных жиров и растительных масел (сливочное масло содержит 25 %, свиное сало - 30 %), многих растительных жиров ((пальмовое, тыквенное, хлопковое масла, масло бразильского ореха, какао и др.);
  • миристиновая (тетрадекановая кислота) - $C_{13}H_{27}COOH$ - одноосновная предельная карбоновая кислота, в природе находится в виде триглицерида в миндальном, пальмовом, кокосовом, хлопковом и других растительных маслах
  • лауриновая (додекановая кислота) - $C_{11}H_{23}COOH$- одноосновная предельная карбоновая кислота, также как и миристиновая кислота, содержится во многих растительных маслах южных культур: пальмовом, кокосовом, масле сливовых косточек, масле пальмы тукума и др.
  • олеиновая (цис-9-октадеценовая кислота) - $CH_3(CH_2)_7-CH=CH-(CH_2)_7COOH$ или общая формула $C_{17}H_{33}COOH$- жидкая одноосновная мононенасыщенная жирная кислота, относится к группе омега-9 ненасыщенных жирных кислот, содержится в больших количествах в животных жирах, особенно в рыбьем жире, а также во многих растительных маслах - оливковом. подсолнечном, арахисовом, миндальном и др.

Дополнительно в составе мыла могут быть и другие вещества, обладающие моющим действием, а также ароматизаторы и красители. Часто для улучшения потребительских свойств к мылу добавляют глицерин, тальк, антисептики.

Способы получения мыла

В основе всех способов получения мыла лежит реакция щелочного гидролиза жиров (животных или растительных):

Приготовление твердого мыла

Чтобы приготовить твердое мыло, нужно взять около 30 г свиного сала и около 70 г говяжьего жира. Всё это растопить, и когда жир расплавится, добавить 25 г твердой щелочи NaOH и 40 мл воды. Перед добавлением щёлочь следует нагреть.

Внимание! Со щёлочью нужно работать аккуратно, чтобы её брызги не попадали на кожу.

Нагревание продолжать в течении получаса на медленном огне, не забывая помешивать (лучше перемешивать стеклянной палочкой). По мере выкипания воды, нужно подливать к смеси предварительно нагретую воду.

Для отделения (высаливания) получившегося мыла из раствора можно использовать раствор пищевой соли (NaCl). Для его приготовления в 100 мл воды нужно растворить 20 г соли NaCl . После добавления соли продолжить нагревание смеси. В результате высаливания на поверхности раствора появляются чешуйки мыла. После остывания нужно собрать ложкой с поверхности раствора появившиеся чешуйки и отжать их с помощью ткани или марли. Для исключения попадание остатков щёлочи на руки, эту операцию лучше проводить в резиновых перчатках.

Полученную массу нужно обмыть малым количеством холодной воды и, для получения приятного аромата, можно добавить спиртовой раствор душистого вещества (например, духи). Можно также добавить красящие и антисептические вещества. Затем всю массу размять, и при небольшом разогреве сформировать нужную форму.

При получении туалетного мыла в промышленных масштабах, в основном, применяются не животные, а растительные жиры. Сколько разных жиров существует, столько различных сортов мыла можно получить. Например, из растительных масел преимущественно получаются жидкие мыла (за исключением оливкового), но в отличии от твёрдого мыла, жидкое мыло не отделяется «высаливанием».

Приготовление жидкого мыла

Приготовление жидкого мыла, также как и приготовление твёрдого мыла, производится путём щелочного гидролиза, но, в отличии от предыдущей методики, нужно использовать раствор едкого кали (KOH). Вместо животного жира можно взять растительное масло с добавлением 30 г. калиевой щёлочи (KOH) и 40 мл воды.

Внимание! Также, как и при приготовлении твёрдого мыла, щёлочь – едкое вещество, лучше работать в перчатках.

Все операции проводятся аналогично первому методу. Однако, вместо высаливания нужно дать раствору остыть, постоянно помешивая. В этом случае получается смесь, состоящая из мыла и воды, а также небольшого количества непрореагировавших веществ, называемых «клеевым мылом». Разделять смесь необязательно. потому что она обладает моющими свойствами.

ПОВЕРХНОСТНО АКТИВНЫЕ ВЕЩЕСТВА (ПАВ)

Определение

Поверхностно-активные вещества́ (ПАВ) - химические соединения, которые, концентрируясь на поверхности раздела термодинамических фаз, вызывают снижение поверхностного натяжения.

Основной количественной характеристикой ПАВ является поверхностная активность - способность вещества снижать поверхностное натяжение на границе раздела фаз.

ПАВ - органические соединения, имеющие в своём составе полярную часть, то есть гидрофильный компонент (функциональные группы кислот и их соли -ОН, -СОО(H)Na, -$OSO_2O(H)Na$, -$SO_3(H)Na$) и неполярную (углеводородную) часть, то есть гидрофобный компонент .

Как уже говорилось, мыла являются поверхностно-активными веществами. Помимо различных видов мыла, к ПАВ также относятся различные синтетические моющие средства (СМС), а также спирты, карбоновые кислоты, амины и т. п.

На основании химической природы молекул, ПАВ подразделяются на четыре основных класса: анионактивные, катионактивные, неионогенные и амфотерные.

1. Анионактивные ПАВ содержат в молекуле одну или несколько полярных групп и диссоциируют в водном растворе с образованием цепочек анионов, определяющих их поверхностную активность. Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатическими цепями или алкилароматическими радикалами. Всего выделяют шесть групп анионактивных ПАВ. Наиболее распространеными анионактивными ПАВ являются алкилсульфаты и алкиларилсульфонаты. Эти вещества малотоксичны, не раздражают кожу человека и удовлетворительно подвергаются биологическому распаду в водоемах, за исключением алкиларилсульфонатов с разветвленной алкильной цепью. Анионактивные ПАВ используют для производства стиральных порошков и чистящих средств.

2. Катионактивные ПАВ диссоциируют в водном растворе с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона, как правило галогенида, иногда аниона серной или фосфорной кислоты. Преобладающими среди катионактивных ПАВ являются азотсодержащие соединения. Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионахтивные, но они могут взаимодействовать химически с поверхностью адсорбента, например с клеточными белками бактерий, обусловливая бактерицидное действие. Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионактивные, но они могут использоваться для придания мягкости тканям. Катионактивные ПАВ также входят в состав стиральных порошков и чистящих средств, но кроме того на их основе готовят шампуни, гели для душа и ополаскиватели для белья.

3. Неионогенные ПАВ не диссоциируют в воде на ионы. Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. Характерная особенность неионогенных ПАВ - жидкое состояние и малое пенообразование в водных растворах. Такие ПАВ хорошо очищают полиэфирные и полиамидные волокна.

4. Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН раствора. Обычно эти ПАВ включают одну или несколько основных и кислотных групп. В зависимости от величины рН они проявляют свойства катионактивных или анионактивных ПАВ. Из группы амфотерных ПАВ наиболее часто используют производные бетаина (например, кокаминопропил бетаин). В сочетании с анионными ПАВ они улучшают пенообразующую способность и повышают безвредность моющих средств. Эти производные получают из природного сырья, поэтому они являются достаточно дорогостоящими компонентами. Амфотерные и неионогенные ПАВ используются при производстве моющих средств с деликатным действием - шампуней, гелей, средств для умывания.

ВЛИЯНИЕ ПАВ НА ЧЕЛОВЕКА И КОМПОНЕНТЫ ОКРУЖАЮЩЕЙ СРЕДЫ

Водные растворы ПАВ в большей или меньшей концентрации поступают с промышленными и бытовыми стоками в водоемы. Очистке сточных вод от ПАВ уделяется большое внимание, так как из-за низкой скорости разложения негативное воздействие на растительные и животные организмы трудно предсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а в воде снижается содержание растворенного кислорода, что в свою очередь ухудшает условия существования других живых форм в водоеме.

Как любая среда биосферы, водоём, имеет свои защитные силы и обладает способностью к самоочищению. Самоочищение происходит за счет разбавления, оседания частиц на дно и формирования отложений, разложения органических веществ до аммиака и его солей за счет действия микроорганизмов. Большая трудность самовосстановления водоемов после воздействия ПАВ состоит в том, что ПАВ чаще всего присутствуют в виде смеси отдельных гомологов и изомеров, каждый из которых проявляет индивидуальные свойства при взаимодействии с водой и донными отложениями, различен и механизм их биохимического разложения. Исследования свойств смесей ПАВ показали, что в концентрациях, близких к пороговым, эти вещества обладают эффектом суммирования их вредных воздействий.

ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде - понижение поверхностного натяжения. В водоемах изменение поверхностного натяжения приводит к снижению концентрации кислорода в массе воды, что вызывает рост биомассы сине-зеленых и бурых водорослей и гибель рыб и других водных организмов.

Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их распада являются углеводы. Однако при адсорбировании ПАВ на поверхности частичек (ила, песка) скорость их разрушения многократно снижается. Поэтому в нормальных условиях они могут высвобождать (десорбировать) ионы тяжёлых металлов, удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.

В организм человека ПАВ могут попадать разными путями - с пищей, водой, через кожу. Компоненты ПАВ могут вызывать аллергические реакции, вплоть до тяжелых осложнений.